Long‐term miR‐29b suppression reduces aneurysm formation in a Marfan mouse model

نویسندگان

  • Homare Okamura
  • Fabian Emrich
  • Jeffrey Trojan
  • Peter Chiu
  • Alex R. Dalal
  • Mamoru Arakawa
  • Tetsuya Sato
  • Kiril Penov
  • Tiffany Koyano
  • Albert Pedroza
  • Andrew J. Connolly
  • Marlene Rabinovitch
  • Cristina Alvira
  • Michael P. Fischbein
چکیده

Aortic root aneurysm formation and subsequent dissection and/or rupture remain the leading cause of death in patients with Marfan syndrome. Our laboratory has reported that miR-29b participates in aortic root/ascending aorta extracellular matrix remodeling during early aneurysm formation in Fbn1C1039G/+ Marfan mice. Herein, we sought to determine whether miR-29b suppression can reduce aneurysm formation long-term. Fbn1C1039G/+ Marfan mice were treated with retro-orbital LNA-anti-miR-29b inhibitor or scrambled-control-miR before aneurysms develop either (1) a single dose prenatally (pregnant Fbn1C1039G/+ mice at 14.5 days post-coitum) (n = 8-10, each group) or (2) postnatally every other week, from 2 to 22 weeks of age, and sacrificed at 24 weeks (n = 8-10, each group). To determine if miR-29b blockade was beneficial even after aneurysms develop, a third group of animals were treated every other week, starting at 8 weeks of age, until sacrificed (n = 4-6, each group). miR-29b inhibition resulted in aneurysm reduction, increased elastogenesis, decreased matrix metalloproteinase activity and decreased elastin breakdown. Prenatal LNA-anti-miR-29b inhibitor treatment decreased aneurysm formation up to age 32 weeks, whereas postnatal treatment was effective up to 16 weeks. miR-29b blockade did not slow aortic growth once aneurysms already developed. Systemic miR-29b inhibition significantly reduces aneurysm development long-term in a Marfan mouse model. Drug administration during aortic wall embryologic development appears fundamental. miR-29b suppression could be a potential therapeutic target for reducing aneurysm formation in Marfan syndrome patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical/Translational Research miR-29b Participates in Early Aneurysm Development in Marfan Syndrome

Rationale: Marfan syndrome (MFS) is a systemic connective tissue disorder notable for the development of aortic root aneurysms and the subsequent life-threatening complications of aortic dissection and rupture. Underlying fibrillin-1 gene mutations cause increased transforming growth factor(TGF) signaling. Although TGFblockade prevents aneurysms in MFS mouse models, the mechanisms through which...

متن کامل

miR-29b participates in early aneurysm development in Marfan syndrome.

RATIONALE Marfan syndrome (MFS) is a systemic connective tissue disorder notable for the development of aortic root aneurysms and the subsequent life-threatening complications of aortic dissection and rupture. Underlying fibrillin-1 gene mutations cause increased transforming growth factor-β (TGF-β) signaling. Although TGF-β blockade prevents aneurysms in MFS mouse models, the mechanisms throug...

متن کامل

Resveratrol Inhibits Aortic Root Dilatation in the Fbn1C1039G/+ Marfan Mouse Model

OBJECTIVE Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1 gene. Patients with MFS are at risk of aortic aneurysm formation and dissection. Usually, blood pressure-lowering drugs are used to reduce aortic events; however, this is not sufficient for most patients. In the aorta of smooth muscle cell-specific sirtuin-1-deficient mice, spontaneous aneurys...

متن کامل

Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development.

MicroRNAs (miRs) regulate gene expression at the posttranscriptional level and play crucial roles in vascular integrity. As such, they may have a role in modifying abdominal aortic aneurysm (AAA) expansion, the pathophysiological mechanisms of which remain incompletely explored. Here, we investigate the role of miRs in 2 murine models of experimental AAA: the porcine pancreatic elastase (PPE) i...

متن کامل

MicroRNAs, fibrotic remodeling, and aortic aneurysms.

Aortic aneurysms are a common clinical condition that can cause death due to aortic dissection or rupture. The association between aortic aneurysm pathogenesis and altered TGF-β signaling has been the subject of numerous investigations. Recently, a TGF-β-responsive microRNA (miR), miR-29, has been identified to play a role in cellular phenotypic modulation during aortic development and aging. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017